Physics 798C

Superconductivity
Spring 2024
Homework 2
Due Thursday, 15 February, 2024

1. The Schrödinger equation for the Macroscopic Quantum Wavefunction $\Psi(\vec{r}, t)=$ $\sqrt{n^{*}(\vec{r}, t)} e^{i \theta(\vec{r}, t)}$ with n^{*} and θ real functions of position \vec{r} and time t for a superconductor is $i \hbar \frac{\partial \Psi}{\partial t}=\frac{1}{2 m^{*}}\left(-i \hbar \vec{\nabla}-q^{*} \vec{A}\right)^{2} \Psi+q^{*} \phi \Psi$, where m^{*} and q^{*} are the (real) effective mass and charge of the superfluid charge carriers, and ϕ and \vec{A} are the scalar and vector potentials, respectively.
a) Under the assumption that the (real) number density $\mathrm{n}^{*}(\mathbf{r}, \mathrm{t})$ is constant in space and time, derive the energy-phase relationship:

$$
-\hbar \partial \theta / \partial \mathrm{t}=\left(1 / 2 \mathrm{n}^{*}\right) \Lambda \mathrm{J}_{\mathrm{s}}{ }^{2}+\mathrm{q}^{*} \phi
$$

from the real part of the macroscopic quantum Schrödinger equation. Interpret this equation physically.
b) Now assume that $\mathrm{n} *(\mathrm{r}, \mathrm{t})$ is NOT constant in either space or time. Show that the imaginary part of the macroscopic Schrödinger equation yields:
$\partial n^{*} / \partial \mathrm{t}=-\nabla \cdot(\mathrm{n} * \mathbf{v})$
Interpret this result physically (it may help to multiply both sides by q^{*}).
2. Fluxoid quantization can be written as $\oint_{C}\left(\Lambda \vec{J}_{s}+\vec{A}\right) \cdot d \vec{l}=n \Phi_{0}$, where n is any positive or negative integer or zero, and C is a circuit that runs entirely inside a superconductor. Using the expression for the supercurrent density in terms of the superfluid velocity, $\vec{J}_{s}=n^{*} q^{*} \vec{v}_{s}$, and the definition of the canonical momentum, $\vec{p}_{c a n}=m * \vec{v}_{s}+q^{*} \vec{A}$, show that fluxoid quantization is an expression of the Bohr-Sommerfeld quantization condition: $\oint \vec{p} \cdot d \vec{q}=n h$, where (q, p) are conjugate coordinate and momentum, and h is Planck's constant.
3. A ring is made up of a film of thickness $1 \mu \mathrm{~m}$, and has an inner diameter of $10 \mu \mathrm{~m}$, and is formed of a superconducting material having London penetration depth $\lambda_{\mathrm{L}}=50 \mathrm{~nm}$ at the temperature under consideration. Assume that the external magnetic field is zero and that the ring has trapped one flux quantum, Φ_{0}. Find the current density (in $\mathrm{A} / \mathrm{cm}^{2}$) at the inner surface of the ring. Hint: Utilize fluxoid quantization and assume that the line integral of the vector potential from the trapped flux is zero along the inner surface of the ring.
4. Here we discuss a model of a Superconductor / Normal Metal Barrier / Superconductor (SNS) Josephson junction. The wave function inside a short ($\ell \ll$ ξ_{N}, where ξ_{N} is the normal metal coherence length) weak-link (normal metal barrier) Josephson junction is given by

$$
\psi(x)=\psi_{0}\left[\frac{-2 x+\ell}{2 \ell} e^{-i(\Delta \phi / 2)}+\frac{2 x+\ell}{2 \ell} e^{+i(\Delta \phi / 2)}\right] \text {, for }-\frac{\ell}{2}<x<+\frac{\ell}{2} \text {, and } \psi_{0} \text { real. }
$$

Note that $\psi\left(x=-\frac{\ell}{2}\right)=\psi_{0} e^{-i(\Delta \phi / 2)}$, and $\psi\left(x=+\frac{\ell}{2}\right)=\psi_{0} e^{+i(\Delta \phi / 2)}$, arising from a phase difference of $\Delta \phi$ across the junction. The complex wavefunction is shown in the Figure.

a) Show that the supercurrent-phase relationship for this junction is given by $J_{S}=$ $\frac{e^{*} \hbar}{m^{*}} \frac{\psi_{0}^{2}}{l} \sin (\Delta \phi)$.
b) Show that the density of superconducting electrons in the barrier is $|\psi(x)|^{2}=$ $\psi_{0}^{2}\left[\cos ^{2}\left(\frac{\Delta \phi}{2}\right)+\left(\frac{2 x}{\ell}\right)^{2} \sin ^{2}\left(\frac{\Delta \phi}{2}\right)\right]$, and the phase of the macroscopic quantum wavefunction is $\phi(x)=\tan ^{-1}\left(\frac{2 x}{\ell} \tan \left(\frac{\Delta \phi}{2}\right)\right)$, for $-\frac{\ell}{2}<x<+\frac{\ell}{2}$.
c) Sketch the density of superconducting electrons and the superfluid velocity $v_{s}=$ $\hbar \nabla \phi / m^{*}$ as a function of position for $\Delta \phi=0, \frac{\pi}{2}, \pi, 3 \pi / 2$.
5. Consider a constant voltage source with $v=V_{0}$ (DC voltage) connected across the generalized Josephson junction in the resistively and capacitively shunted junction (RCSJ) model as shown in the figure. The resistive channel is approximated by a constant resistance R, and the ideal Josephson junction with critical current I_{c} has a supercurrent given by the first Josephson equation with phase-difference φ.

(a) Show that the currents through the ideal junction, the resistor, and the capacitor are, respectively;

$$
\begin{aligned}
& i_{J J}(t)=I_{c} \sin \left(\frac{2 \pi}{\Phi_{0}} V_{0} t+\varphi(0)\right) \\
& i_{R}(t)=\frac{V_{0}}{R}, \text { and } \\
& i_{C}(t)=0
\end{aligned}
$$

where $\varphi(0)$ is the initial phase difference across the ideal junction at $t=0$.
(b) The total current $i(t)$ through the generalized junction is then $i(t)=i_{J J}+i_{R}+i_{C}$. Show that the time-averaged current $\langle i(t)\rangle$ over one period of $\Theta=\Phi_{0} / V_{0}$ is $\langle i(t)\rangle=\frac{V_{0}}{R}$.

